Geometry

Name ______ Date ______ Period ______

Ch 2.1 Conditional Statements

If a snake,	
then	Cares
Conditional statement:	
If p, then q. OR $p \rightarrow q$	
For example: If an animal is a bird, then	
Examples: If today is Thanksgiving Day, then	
A number is a rational number if	
Write a conditional:	
An obtuse triangle has exactly one obtuse angle.	
BIRDS BLUE JAYS	
A conditional statement has a truth value of either	_
 For example: If the animal is a bluejay, then 	
• If today is, then	
• If I own a, then	

Hypothesis p	Conclusion q	Conditional p -> q
Т	Т	Т

Logically equiva	alent statements:			
Ехатр	ne:			 -
Evene	in q, then p .	UK	ч → Р	
Sent apositive.	If ~a then ~n	OP	~~~ ~~~	
Contranositive				
Examp	le:			 -
	If ~p, then ~q.	OR	~p → ~q	
Inverse:				
Linip	····			-
Examo	le:			
	lf q, then p.	OR	q → p	
Converse:				
Examp	le: If two angles are con	gruent, then th	ey are acute.	
Conditional:	lf p, then q.			
	p becomes ~p	OR "	not p″	
Negation:				

Statement	Example	Truth Value
Conditional		
Converse		
Inverse		
Contrapositive		

Example: Let p be "you are a guitar player" and let q be "you are a musician." Write the following:

1. the conditional statement

2. the converse

Big Ideas Ch 2 Notes

3. the inverse

4. the contrapositive

Big	Ideas	Ch	2	Notes
היים	lacas	~	~	110105

Biconditional statement:

p if and only if q.	
The biconditional form means both the	_ and its
Example: "An angle is obtuse if and only if its measure is greater than 90 degrees	and less than 180 degrees."
Write the conditional:	

Write the converse:

Example: "A solution is neutral ↔ its pH is 7.""

Write the conditional:

Write the converse:

Ch 2.2 Inductive and Deductive Reasoning

Vocabulary

Conjecture:

Inductive reasoning:

Use Inductive Logic

What conclusion can you make about the sum of the interior angles of an n-sided polygon?

Polygon	Number of sides	Sum of interior angles
Triangle	3	180°
Quadrilateral	4	360°
Pentagon	5	540°
Hexagon	6	720°

Conjecture

Conjecture: The sum of two numbers is always greater than the bigger number. True or false?

Counterexample:

Deductive reasoning:

Example: There is a myth that the Great Wall of China is the only man-made object visible from the moon. The Great Wall is barely visible in photographs taken from 180 miles above Earth. The Moon is about 237,000 miles away. Therefore the myth can't be true.

Law of Detachment:

Example:

Conditional: If two segments have the same length, then _____

Hypothesis: You know that _____

Using the Law of Detachment, you can conclude ______

Law of Syllogism:

Try this:

If soccer practice is cancelled, then you can go to the mall after school. If it is raining today, then soccer practice is cancelled. By the Law of Syllogism:

Logic Problem #1

A milkman has two empty jugs: a three gallon jug and a five gallon jug. How can he measure exactly one gallon without wasting any milk?

Logic Problem #2

You are in the dark, and on the floor there are six shoes of three colors, and a heap of twenty-four socks, black and brown. How many socks and shoes must you take into the light to be certain that you have a matching pair of socks and a matching pair of shoes?

Ch 2.3 Postulates and Diagrams

Vocabulary

- Undefined terms:
- Postulate:
- Theorem:

Postulates

5. If two planes meet, then their intersection is ______

Identify the Postulate

Ch 2.4 Algebraic Reasoning

Solve: 3x + 2 = 23 - 4x

<u>Statement</u>

<u>Reason</u>

Algebraic Properties of Equality (POE)

Addition Property of Equality	
Subtraction Property of Equality	
Multiplication Property of Equality	
Division Property of Equality	
Substitution Property of Equality	
Distributive Property of Equality	

Solve: -2p - 9 = 10p - 17

<u>Statement</u>

<u>Reason</u>

Solve: -4 = -10b + 6 (2 - b)

<u>Statement</u>

<u>Reason</u>

More Algebraic Properties of Equality (POE)

Reflexive Property of Equality	
Symmetric Property of Equality	
Transitive Property of Equality	

Name the property of equality:

- 1) If $m \ge 6 = m \ge 7$, then $m \ge 7 = m \ge 6$.
- 2) 37° = 37°
- 3) If AB = CD and CD = EF, then AB = EF.

Ch 2.5 Proving Statements about Segments and Angles

Vocabulary

Proof:

Two-column proof:

Complete the Proof

Given T is the midpoint of \overline{SU} .	$\overset{\bullet}{S}$ 7x $\overset{\bullet}{T}$ 3x + 20 $\overset{\bullet}{U}$
Prove $x = 5$	
STATEMENTS	REASONS
1. T is the midpoint of \overline{SU} .	1
2. $\overline{ST} \cong \overline{TU}$	2. Definition of midpoint
3. $ST = TU$	3. Definition of congruent segments
4. $7x = 3x + 20$	4
5	5. Subtraction Property of Equality
6. $x = 5$	6

Vocabulary

Definitions: used in a proof to _____

Geometric Term	Algebraic Term
congruent segments $\overline{AB} \cong \overline{CD}$	
supplementary angles	
complementary angles	

Vocabulary - Geometric Definitions

midpoint:

bisector:

Geometric Properties of Congruence (POC)

Reflexive Property of Congruence	
Symmetric Property of Congruence	
Transitive Property of Congruence	

Complete the Proof:

Given *M* is the midpoint of \overline{AB} . **Prove** $AB = 2AM, AM = \frac{1}{2}AB$

Statement

<u>Reason</u>

Ch 2.6 Proving Geometric Relationships

Theorems

Compute the angles:

1) Use the vertical angles diagram above. If $m \ge 1 = 53^{\circ}$ above, compute the values of angles 2, 3, and 4.

2) Compute the value of w in the diagram on the right.

Complete the Proof:

Given $\angle 1$ and $\angle 2$ are supplementary. $\angle 1$ and $\angle 3$ are supplementary. Prove $\angle 2 \cong \angle 3$

<u>Statement</u>

<u>Reason</u>

Complete the Proof:

Given $AB = DE, BC = CD$ Prove $\overline{AC} \cong \overline{CE}$	A B C D E
STATEMENTS	REASONS
1. AB = DE, BC = CD	1. Given
2. AB + BC = BC + DE	2. Addition Property of Equality
3	3. Substitution Property of Equality
4. AB + BC = AC, CD + DE = CE	4
5	5. Substitution Property of Equality
6. $\overline{AC} \cong \overline{CE}$	6